
A Programmable Protocol Processor Architecture

for High Speed Internet Protocol Processing

Yutai Ma, Axel Jantsch and Hannu Tenhunen

ESD Laboratory, Department of Electronics

Royal Institute of Technology, Sweden

fyutaim, axel, hannug@ele.kth.se

Abstract- We present a FSM model for

programmable protocol processors. It removes

the branch instruction penalty and thus it is

suitable for control intensive protocol process-

ing. A case study of high speed IP routing on

this model is done, which indicates that two

times performance of general purpose super-

scalar microprocessors can be achieved.

1 Introduction

Due to the ever-evolving protocols and ser-
vices used in computer communications, it
raises a demand for protocol processors with

exibility so as to make it possible to keep up
with the pace of protocol research and devel-
opment. On the other hand, although general
purpose computers have powerful processing
capability, because they are not designed par-
ticularly for protocol processing the poten-
tial high performance can not be utilized ef-
�ciently when they are applied to high speed
computer communication.

Programmable protocol processors provide
an alternative solution to constructing high
speed computer communication systems with

exibility by using special architectures which
are suitable for protocol processing. The ex-
periment of [2] indicates that at least 3{4

times performance gain can be achieved by
using special instructions for protocol pro-
cessing. [3] developed an architecture model
for protocol processing. Their simulation re-
sults show that an aggregate gain of approx-
imately 10:1 is obtained compared to general
purpose processors. [1, 5] developed a pro-
tocol processor for gateways. Their protocol
processor gains 12-fold performance of con-
ventional system for transmission and 7-fold
performance for reception.
FSM (�nite state machine) has been widely

used to describe internet protocols. We no-
tice that FSM based protocol processors have
many advantages over traditional processors
in protocol processing. The main advantages
are that the penalty of branch instructions
is removed and a branch or jump instruc-
tion can be combined with other operations.
These provide a possibility for constructing

exible and high performance protocol pro-
cessing systems.
This paper is devoted to FSM proto-

col processor architecture with concentra-
tion on state memory organization and e�-
cient branch instruction implementation. Al-
though research have been done to compare
protocol processors and general-purpose mi-
croprocessors, there are no reports about pro-
grammable protocol processors and high per-

1



formance superscalar microprocessors. We
use IP routing as an example to investigate
application possibility of programmable pro-
tocol processors, which indicates that FSM
programmable protocol processors can im-
prove the performance of protocol processing
by 100% over general-purpose superscalar mi-
croprocessors.

2 A FSM Architecture

Based on ALU Flags

An obstacle to the performance of SRAM
based FSMs is how to generate addresses
for di�erent state transitions from a proto-
col state at a time. We want the address
generation to be simple enough so that we
can integrate it into address decoding of the
state memory. In this section we discuss a
new FSM model and an e�cient branch tar-
get address generation.

2.1 Architecture andWord For-

mat of The State Memory

The word format is shown in Figure 1 and
the FSM model is shown in Figure 2. The in-
struction �eld controls ALU operations, mem-
ory read/write, and I/O operations. The
next state �eld speci�es a base address to
the state memory for next state memory read
operation. We use ALU 
ags and the con-
trol �eld to capture a state transition or
a branch/jump instruction. Since protocol
processing is full of control and branch in-
structions, it deserves combining a branch or
jump instruction with other ALU or mem-
ory read/write operations. The control �eld
is used to specify which 
ag join condition
evaluation for state transition. The control
�eld works with the branch bits to generate

an n-bit address o�set for branch target in-
structions, where n is the bit-width of the
branch �eld. In this illustration, only one bit
is used. Therefore, a base address speci�ed
by the next state �eld and a generated branch
target address o�set form the address to the
state memory.

Control 1-Bit Next Instructon

Field Branch State Field

Figure 1: Word Format of State SRAM.

ALU
Reg

Instruction

State

Memory

(SRAM)

F1

F2

C

B

S

S
ta
te
T
ra
n
s.

S
eg
.
R
eg
.

Packet
Memory

Stack Data

Route Table

?

?
-
-
-
-

-

-

1-Bit R

-

ALU Flags

-

-
-
-

State/Branch/Control Fields

� �

6
?

- -Packets Input Output

6�

Figure 2: A FSM Model for Programmable
Protocol Processors Based on ALU Flags.

2.2 Address O�set Generation

of Branch Targets

Condition evaluation and branch instruction
(block \State Trans." in Figure 2) is illus-
trated in Figures 3 and its generated address
o�set of branch target is shown in Table 1.

When a control bit is set to \1", the current
state will transfer to a next state only when
the corresponding 
ag is set up, in this case

2



the branch bit should be set to \1". If a con-
trol �eld is set to \0", no condition is required
for the corresponding 
ag. If no control bit is
set to \1", then no condition is required for
this state transition. In this case the branch
bit can be either \0" or \1". This is useful
for unconditional jump instructions and tasks
which cannot be completed in one instruction
cycle. This insight is illustrated in Table 1.

��H
H b

ppppppppppppppppppppppppppppppppppppppppppppp
pppppppppppppppppppp
ppppppppppppppppp
pppppppppppppppp
pppppppppppppppp
pppppppppppppppp
ppppppppppppppppppp
ppppppppppppppppppppppppppp

ppppppppppppppppppppppppp

b

F1

C1

��H
H b

ppppppppppppppppppppppppppppppppppppppppppppp
ppppppppppppppppppppp
pppppppppppppppp
pppppppppppppppp
ppppppppppppppp
pppppppppppppppp
ppppppppppppppppppp
ppppppppppppppppppppppppppp

pppppppppppppppppppppppppp

b

F2

C2

ppppppppppppppppppppppppppppppppppppppppppppp
ppppppppppppppppppppp
pppppppppppppppp
ppppppppppppppp
ppppppppppppppp
pppppppppppppppp
ppppppppppppppppppp
ppppppppppppppppppppppppp

ppppppppppppppppppppppppppppp

b
R

B
Branch Bit

Figure 3: State Transitions Evaluation.

Table 1: Branch Target Address O�set

Control Cond. 1-Bit R: Branch Target
Field Eval. Branch Address O�set

> 0 True \1" \0"
False \1" \1"

= 0 { \0" \1"
{ \1" \0"

It is worth noting that to clear ambigu-
ity among multiple 
ag pattern matches in
a state when the bit-width of address o�set is
less than that of the control �eld or 
ag reg-
ister (here, the bit-width of the address o�-
set is one), the pattern with more `1's should
be matched �rst. For example, for 
ag pat-
terns of \11" and \10", pattern match of \11"
should be done �rst.

2.3 State Memory Capacity

To reduce the state memory complexity, the
�eld length of next state is restricted. For
example, with 10-bit representation of the

branch bit and next state �elds 1k instruc-
tions can be accommodated. To accom-
modate more instructions/programs into the
state memory, a virtual memory management
unit like the one used on general purpose mi-
croprocessors can be used. We can also choose
a simpli�ed form by using a segment register
to indicate a memory segment as shown in
Figure 2. This segment register can be set up
by a speci�c ALU operation. When a pro-
gram needs to roam into another segment, an
instruction is used to update the segment reg-
ister and a following instruction use its own
next state �eld and the segment register to
fetch next instruction in another state mem-
ory segment. Since jumping across segments
is much less frequent compared to normal op-
erations, this overhead is light.

2.4 An Example

We use a send subroutine of ARQ protocol
[4] to illustrate how our model works. To
simplify this illustration, we do not focus on
these statements implementation but assume
that some statements are implemented by one
instruction. The send subroutine is described
in Figure 4. Assume two 
ag bits are used to
represent the frame type data, nak and ack
and they are encoded as \11", \10" and \01"
respectively. A program by using our model
is shown in Figure 5, where we assume that
this subroutine returns to an instruction in
address \011".

3 Comparison with Gen-

eral Purpose Processors

Protocol processing is full of control opera-
tions. Therefore, the execution e�ciency of
branch and jump instructions has a severe
impact on protocol processing performance.

3



s.kind = fk; /* Instruction 1 */
s.seq = frame nr;
s.ack = (frame expected+MAX SEQ) %

(MAX SEQ+1);
stop ack timer(); /* End of Instr 1*/

if fk = data then /* Instruction 2 */
s.info = bu�er[frame nr % NR BUFS];
start timer(frame nr % NR BUFS);

end if; /* End of Instr 2 */

if fk = nak then /* Instruction 3 */
no nak = false;

end if; /* End of Instr 3 */

to physical layer(&s); /* Instruction 4 */

Figure 4: ARQ Send Subroutine [4].

Addr. Instr. Control Branch Bit Next Sate

000 Instr1 11 1 01
001 Instr2 10 1 10
010 Instr3 00 0 10
101 nop 10 1 10
110 Instr4 00 1 11

Figure 5: A FSM Program for the ARQ Send
Subroutine Based on Our FSM Architecture

From Figure 2 and Figure 3 we see that the
main advantages of our model over general
purpose processors are that the hazard of
branch and jump instructions is removed and
case statement is supported. On the other
hand, in our model branch and jump instruc-
tions can be combined with other operations.
These advantages lead to a high e�ciency of
protocol processing.

We focus on branch and jump instructions
issue here, however our model also shares
other properties of general purpose proces-
sors. For example, virtual memory manage-

ment and interrupt handle mechanisim. This
means that our model can provide 
exiable
and powerful processing capability as general
purpose processors while suitable for protocol
processing.

4 A Case Study of IP

Packet Forward

IP packet forward is to use destination ad-
dress of an incoming packet to search for the
next network address. To make e�cient use of
internet address space and to attenuate rout-
ing entries growth, classless interdomain rout-
ing (CIDR) protocol was deployed, by which
a longest pre�x matching is performed each
time. Usually a pre�x tree is used to express
forwarding tables. The idea is that each pre-
�x is represented by a leaf in a tree structure
and pre�x value corresponds to a path from
root to the leaf of the tree.
Forwarding IP packets has been modeled

on our architecture. Compact forwarding ta-
bles are used to forward IP packets. In this
data structure pre�xes are categorized into
pre�xes with length 1{16, pre�xes with length
17{24 and pre�xes with length 25{32 groups.
With such hierarchical structure, the tables
need 68{269 KBytes memory for the real-
world IP routing tables.
The model consists of 66 instructions to-

tally. Assume all of the data structures are
stored in a secondary cache and a memory
access consumes 6 instruction cycles. It takes
15{37 instruction cycles to complete a packet
forward action. It is at least two times pro-
cessing speed of general-purpose superscalar
microprocessors. Excluding the memory ac-
cess expense, it takes only 13 instruction cy-
cles to perform pattern match operations on
IP address and routing pre�xes. Especially,
the binary search in the forwarding operations

4



is performed e�ciently on this architecture

It is possible to achieve a wired-speed trans-
mission rate by constructing a parallel pro-
cessing system. With the penalty-free state
transition control, performance degradation
due to many compare and branch operations
in this application is avoided.

Many e�cient IP routing algorithms are
emerging every year. Meanwhile, current IP
address space is expected to be full after ten
years and IPv6 is now on the verge of deploy-
ment on the internet. There will be a long
time to make IP routing algorithms matured
when IPv6 is widely used. Therefore, high
performance programmable protocol proces-
sors will not only survive but also win de�-
nitely a large space on the internet market.

5 Further Works

We will investigate more internet protocols
and algorithms and apply them on our archi-
tecture, such as multimedia information real-
time transfer on the internet, high-speed Eth-
ernet, high-speed ATM network. Attention is
focused on architectural support for protocol
processing. The pro�le of the architecture will
be more clear with the progress of our work
in the future.

We will inspect applications of pro-
grammable protocol processors as a standby
accelerator for a speci�c application such as
a router/switch, a general-purpose process-
ing system such as a web server and investi-
gate possibility of constructing powerful par-
allel/pipelined protocol processing systems.

On the other hand, we need to develop
an assembler and a compiler to transform
high level language programs such as a C
language program or a SDL-FSM program
into an instruction sequence on this FSM pro-
grammable protocol processor architecture.

6 Conclusion

FSM is an e�ective model for protocol de-
scription and protocol processing. In this
paper we have proposed an FSM architec-
ture for programmable protocol processors.
Compared to general purpose processors, our
model removes branch instruction hazard.
The case study of forwarding IP packets
shows that our programmable protocol pro-
cessor model is e�ective for control-intensive
internet protocol processing and two times
performance is achieved over general purpose
superscalar microprocessors. Our FSM model
can be used for constructing complex proto-
col processing systems by using a virtual state
memory management unit or by constructing
a parallel protocol processor.

References

[1] Tetsuhiko Hirata, Susumu Matsui and
Tatsuya Yokoyama, \A high speed pro-
tocol processor to boost gateway perfor-
mance", Proceedings of Globecom'1990.

[2] Axel Jantsch, Johnny Oberg and Ahmed
Hemani, \Is there a nich for a general
protocol processor core?", Proceedings of
Norchip'1998.

[3] Baiju D. Mandalia, Mohammad Ilyas
and Eduardo B. Fernandez, \Perfor-
mance evaluation of the communications
protocol processor", Proceedings of IEEE
ICC'1990.

[4] Andrew S. Tanenbaum, \Computer Net-

works", pp.216{217, Third Edition,
Prentice-Hall, 1996.

[5] Matsuaki Terada, Tatsuya Yokoyama,
\A high speed protocol processor to exe-
cute OSI", Proceedings of INFOCOM'91.

5


